Modeling of Impact Pendulum

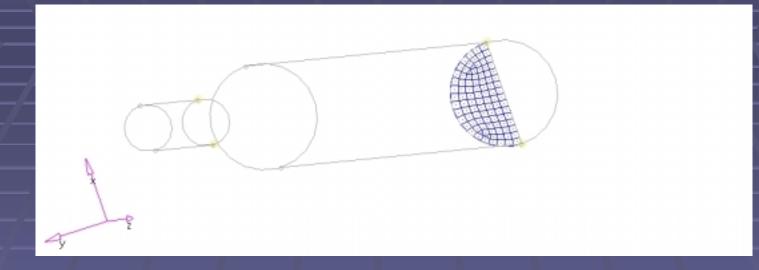
Chris Ransel MEG 795 12/12/03

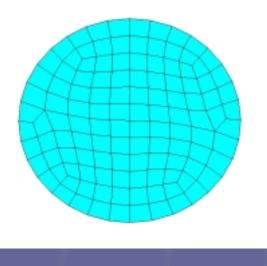
Objectives

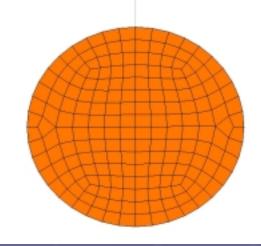
Simulate impact of steel projectile and pendulum at 2112 in/s (120 mph).

Compare model to calculations.

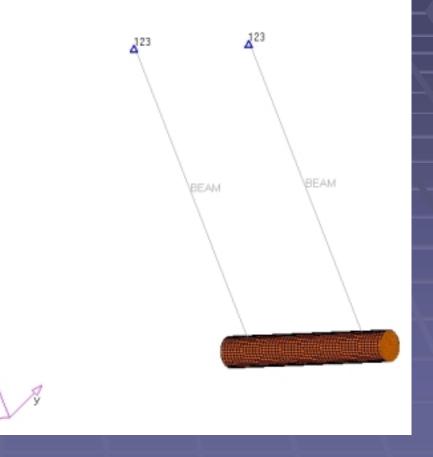
Compare peak acceleration of model to measured values during real life testing.


Test Setup





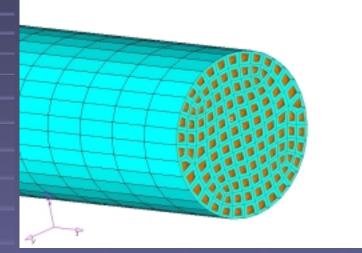
Meshing



Slug Mesh

Pendulum mass mesh

Modeling Steel Cables

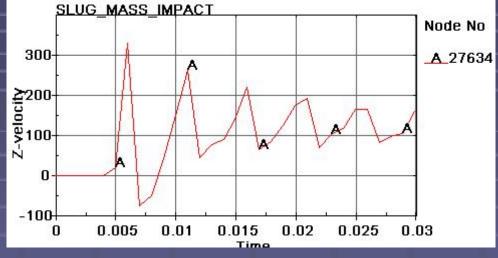

- Modeled as beam elements
- Fixed nodes at top position of cables
- Created nodes at attachment to mass
- Beams created between two nodes

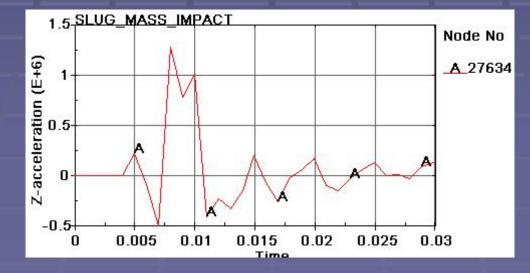
Initial Material Card Units (lb_f, lb_m, in, sec) MAT_PLASTIC_KINEMATIC AISI 1017 Steel Density (lb/in3) 0.284 Young's Modulus (psi) 29700000 Poisons Ratio 0.3 Yield Strength (psi) 49300 Strain rate effects ■ SRC = 0.5 ■ SRP = 1.5 $\sigma_y = \begin{pmatrix} \frac{1}{1+\frac{\epsilon^p}{C}} \end{pmatrix} \cdot \left(\sigma_o + \beta E_p \cdot \epsilon_{eff} \right)^p$

Contact Card

- Surface to surface
- Segment Sets for slug and mass
- Pendulum mass set to master
- Scale factor of 10 for slave and master

Measured Acceleration and Impact Equations

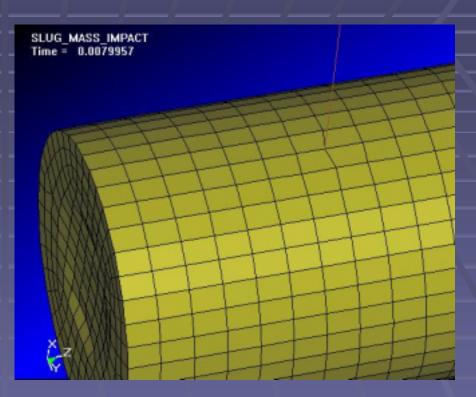

Measured acceleration of pendulum mass: 1.50472e6 in/s²


projectile mass:	m _a := 51b	initial velocity:	$v_{a1} \coloneqq 2112 \frac{in}{s}$
pendulum mass:	m _b := 110lb		v _{b1} := 0
coeff of restitytion:	e := 0.6		
momentum equation: $m_a \cdot v_{m1} + m_b \cdot v_{b1} := m_a \cdot v_{a2} + m_b \cdot v_{b2}$			
coefficient of restitution equ: $e := \frac{v_{b2} - v_{a2}}{v_{a1} - v_{b1}}$			
solving the equations giv	ves: v _{a2} := -]	$1120.3\frac{\text{in}}{\text{s}}$ and	$v_{b2} \coloneqq 146.9 \frac{in}{s}$

Initial Model Results

- Slug
 - Peak velocity after impact = -441 in/s
 - Relative velocity error = 60%
- Pendulum Mass
 - Peak velocity after impact = 330 in/s
 - Relative velocity error = 125%
 - Peak acceleration after impact = 1.288e6 in/s²
 - Relative acceleration error = 14.4%

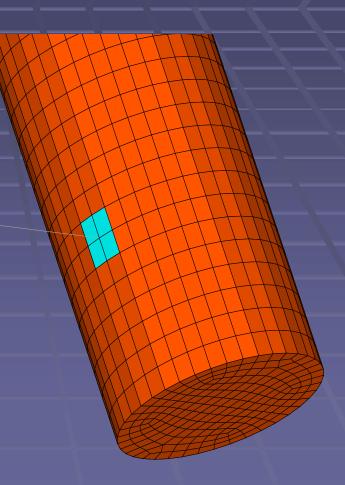
Initial Mass Velocity and Acceleration Plots



Problems with Initial Model

 Oscillation of pendulum mass
 Unknown materials

 Different properties for the slug and mass
 Incorrect deformation


Second Model

- Stiffened elements around cable attachments
- Applied global damping
- Removed strain effects from material card
 Scaled yield stress

Stiffened Elements

Material Card

- *MAT_PLASTIC_KINEMATIC
- **\$HMNAME MATS** 3beam_connect_elem_mat
- 3 0.28460000000. 0.3 3500000.0

Damping

- Damping constant was determined based on lowest frequency mode with the following equation.
 - d = $2^*\omega_{min}$
- FFT analysis displayed a mode at 5 Hz.
- The initial damping constant was 60
 - *DAMPING_GLOBAL
 - \$ LCID VALDMP
 - 0 60

Material Cards

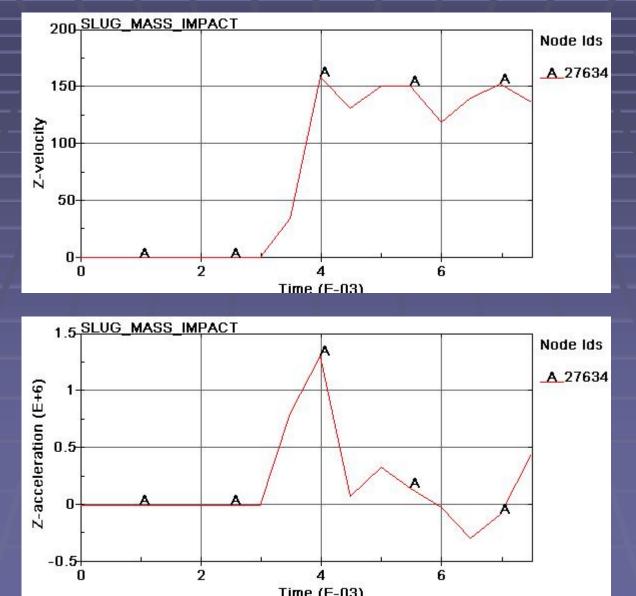
Slug

- *MAT_PLASTIC_KINEMATIC
- \$HMNAME MATS 1steel
- 1 0.2842900000.0 0.3 4250000**.**

Mass

- *MAT_PLASTIC_KINEMATIC
- \$HMNAME MATS 3beam_connect_elem_mat
- **3** 0.28460000000. 0.3 3500000.

Second Model Results


Slug

- Velocity = 1315 in/s
- Relative error = 17.4%

Mass

- Velocity = 159 in/s
- Velocity error = 8.2%
- Acceleration = 1.3073E6 in/s²
- Acceleration error = 13%
- Slug deformation
 - Diameter increased by 0.3in
 - Live fire test diameter increased by 0.1in
 - Relative error = 9.5%

Second Model Plots for Mass

Conclusion

- Damping and element stiffening helped decrease oscillation.
- Scaling yield stress produced good results; however, it made material properties unrealistic.
- Material models needs to be benchmarked.